

Thoroughbred® Script-IVTM
Developer Guide

Version 8.7.0

285 Davidson Ave., Suite 302 • Somerset, NJ 08873-4153
Telephone: 732-560-1377 • Outside NJ 800-524-0430

Fax: 732-560-1594

Internet address: http://www.tbred.com

Published by:
Thoroughbred Software International, Inc.
285 Davidson Ave., Suite 302
Somerset, New Jersey 08873-4153

Copyright © 2009 by Thoroughbred Software International, Inc.

All rights reserved. No part of the contents of this document
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Document Number: SD8.7.0M101

The Thoroughbred logo, Swash logo, and Solution-IV Accounting logo, OPENWORKSHOP, THOROUGHBRED, VIP FOR
DICTIONARY-IV, VIP, VIPImage, DICTIONARY-IV, and SOLUTION-IV are registered trademarks of Thoroughbred
Software International, Inc.

Thoroughbred Basic, TS Environment, T-WEB, Script-IV, Report-IV, Query-IV, Source-IV, TS Network DataServer, TS ODBC
DataServer, TS ODBC R/W DataServer, TS ORACLE DataServer, TS DataServer, TS XML DataServer, GWW, Gateway for
Windows™, TS ChartServer, TS ReportServer, TS WebServer, TbredComm, WorkStation Manager, Solution-IV Reprographics,
Solution-IV ezRepro, TS/Xpress, and DataSafeGuard are trademarks of Thoroughbred Software International, Inc.

Other names, products and services mentioned are the trademarks or registered trademarks of their respective vendors or
organizations.

1
Copyright © 2009 Thoroughbred Software International, Inc.

IINNTTRROODDUUCCTTIIOONN
Thoroughbred Dictionary-IV is an application development environment that contains a set of integrated
tools designed to remove much of the burden from programming. Thoroughbred Script-IV is a high-level
programming language included in the Dictionary-IV product set.

Operating System Support: UNIX, Linux, OpenVMS, and Windows
For specific information, please contact your Thoroughbred Sales Representative.

Overview of Thoroughbred Script-IV

Script-IV is a fourth-generation programming language that provides a set of structured commands. The
language was designed to be concise but comprehensive. Because the commands are based on English
language constructs, most software developers find them easy to learn and easy to remember.

The language enables developers to write task-oriented code. A script tells the system what to do but it
does not necessarily specify how to do it. Script-IV determines how to manage most of the details.

For example, suppose that you want to write a script that will close all open purchase orders with a
balance of less than 500 dollars. The following Script-IV code fragment accomplishes that task:

 PRINT SCREEN POCHECKS
 CHANGE PODATA USING
 KEY RANGE FROM FIRST TO LAST
 SELECT WHEN STATUS = "OPEN" AND
 PURCHASE-AMOUNT <500
 PROCESSING IS CLOSE-PORDERS

The sample code above uses system resources defined in Dictionary-IV. Script-IV can access the
Dictionary-IV database and system dictionary, which contain the following system resources:

Format defines the format of a logical group of data or the physical record layout of a data file.

View defines a way of specifying and displaying multiple data records.

Help defines context-sensitive, on-line help for menus, data entry, and messages.

Screen defines a screen that is displayed on the terminal. The sample code fragment above uses the
POCHECKS screen.

Link specifies a sort, text, or data file and links it to a format, screen, or view. The sample code
fragment above uses the PODATA link.

Menu provides a list of items to select.

Messages contain common messages that can be used by scripts.

2
Copyright © 2009 Thoroughbred Software International, Inc.

These resources enable developers to write terse code and enable Script-IV to manage the implicit details,
such as how information will be displayed. Because Script-IV was designed as a flexible language,
developers can override Dictionary-IV defaults and specify explicit sets of instructions. For more
information on the resources listed above see to the Dictionary-IV Developer Guide.

Script-IV works in concert with other Dictionary-IV components. Developers can use Source-IV to write,
compile, and edit scripts. A script can execute reports created under Report-IV and execute queries
created under Query-IV.

Script-IV was designed to provide alternatives to third-generation programming techniques, but it also
provides an interface to the Thoroughbred Basic third generation language. Developers can migrate
existing Thoroughbred Basic applications to Script-IV or use scripts to integrate existing Thoroughbred
Basic programs with Script-IV.

Script-IV was designed to help developers create, maintain, and enhance applications:

• Script-IV enables developers to produce readable, self-documenting code.

• Script-IV is dictionary-driven. Resources can be defined once in a common dictionary and shared
among applications. If a developer needs to change a resource definition, the change applies to every
script that uses the definition.

• Script-IV supports a multiple spoken-language interface.

• Script-IV can be run with Thoroughbred VIP and Gateway for Windows for display and full use
under the Microsoft Windows graphical user interface.

For More Information

• about creating applications please refer to the Thoroughbred Dictionary-IV Developer Guide.

• about software conventions and databases, refer to the Dictionary-IV User Guide.

• about using an Dictionary-IV product please refer to the individual product reference manual. The
Query-IV, Report-IV, Script-IV, and Source-IV Reference Manuals are available from Thoroughbred
Software.

• about Thoroughbred Basic please refer to the Thoroughbred Basic Reference Manual.

• about Thoroughbred Basic Utilities please refer to the Thoroughbred Basic Utilities Manual.

3
Copyright © 2009 Thoroughbred Software International, Inc.

CCRREEAATTIINNGG SSCCRRIIPPTTSS
Source-IV is a source code management system. Its editor has many advantages over the native Script-IV
editor, including:

• An elegant interface with advanced editing functions
• Source-code management capabilities
• Edit histories that enable you to track and undo changes

If you use Source-IV to edit scripts, you must compile the scripts from Source-IV. A script compiled
under Source-IV must be maintained in Source-IV. If you use the Script-IV script editor to edit a script,
you must compile the script from the Dictionary-IV Development Menu or the script editor.

If you plan to use Source-IV to edit scripts, you can skip the following section and go to the section on
How to Structure a Script. For more information on Source-IV see the Source-IV Manual.

If you are not sure whether Source-IV is installed on your system, please contact your system
administrator or the person who installed Script-IV.

The Script Editor

To enter the script editor, log on to Dictionary-IV. The Dictionary-IV Control Menu will be displayed:

4
Copyright © 2009 Thoroughbred Software International, Inc.

Type the number that corresponds to the Dictionary-IV Development Menu and press the Enter key. The
Dictionary-IV Development Menu will be displayed:

Type the number that corresponds to the Edit Definition function and press the Enter key. A pop-up
menu will be displayed:

5
Copyright © 2009 Thoroughbred Software International, Inc.

NOTE: The pop-up menu displayed above is available from any Dictionary-IV menu by pressing the F1
key.

Type the number that corresponds to Scripts and press the Enter key. You will be placed in the Script
Definition screen:

The Script Definition screen provides the following features:

1. The maintenance mode is displayed on the first line.

2. The definition facilities are displayed on the second line.

3. The components of the script definition are displayed on lines three through six.

4. The function keys active in the script editing area are displayed on the seventh line.

5. The script editing area occupies the remainder of the screen.

These features are described in the following subsections.

Maintenance mode

The maintenance mode is displayed on the first line. For more information on maintenance modes see the
subsection on Components of Script Definition.

6
Copyright © 2009 Thoroughbred Software International, Inc.

Definition Facilities

This selector message enables you to switch to other definition facilities. For more information on these
definition facilities see the Dictionary-IV
Developer Guide.

Components of Script Definition

SCRIPT Name: Type from 3 to 8 alphanumeric characters for the name of the script and press the
Enter key. This field is mandatory.

Characters one and two are the library name. Characters three through eight are the
script name. If the library does not exist, the system allows you to create it here.

See Volume I of the Dictionary-IV Reference Manual, which provides a file naming
convention you may implement.

The following function keys are available from the SCRIPT Name: field:

F1 Switches maintenance mode:

Add/Change mode enables you to create a new script or edit an existing
script.

Delete mode enables you to delete an existing script.

Rename mode enables you to rename an existing script.

Copy mode enables you to copy a script.

F2 Displays a lookup of existing script names. For more information see the
subsection on Script Definition Lookup.

F4 Exits. Press once to go to the Definition Facilities, which are discussed below.
Press again to return to the Dictionary-IV Development Menu.

F6 Displays on-line help. For more information see the subsection on Getting Help.

Desc: Type up to 40 alphanumeric characters for the description of this script and press the Enter
key. This field is optional.

Password: Type from 1 to 3 alphanumeric characters and press the Enter key. The system will ask you
to verify the password. This field is optional.

Chng: Displays the date of the last change to the script definition. The system generates this field.

Compiled: Displays the date when the script was last compiled. The system generates this field.

7
Copyright © 2009 Thoroughbred Software International, Inc.

Type: The following values are available:

1 - Primary Script
2 - Continuation Script
3 - Overlay Script
P - API Pre/Post Processing Script
4 - File Maintenance Pre/Post Processing Script
5 - Copy Script
6 - Public Script
U - Utility Script

Type the number or letter that corresponds to the script type and press the Enter key.
This field is mandatory.

For more information on script types see the Different Types of Scripts section in
this chapter.

Function Keys Active in the Script Editor

The following function keys are available in the script editor:

F1 Split a line.

F2 Join lines.

F3 Compile and save a script.

F4 Exit the script.

F6 Help key, which opens the on-line help system. For more information, see the subsection on
Getting Help.

F7 Compile and save a script.

F8 Search and replace. Press twice to reuse a previous search.

F9 Expand screen. Press again to reset the screen to its original size.

F10 Goto a procedure.

F11 Enter a comment line.

Other Editing Keys Active in the Script Editor

The following keys are available in the script editor:

Moving on a Line

Left Arrow Move left one character.

8
Copyright © 2009 Thoroughbred Software International, Inc.

Right Arrow Move right one character.

Back Tab Move left one tab stop. The Script-IV editor has preset tabs.

Tab Move right one tab stop. The Script-IV editor has preset tabs.

Moving Between Lines

Up Arrow Move up one line. At the bottom of a window, move up half a window.

Down Arrow Move down one line. At the top of a window, move down half a window.

Page Up Move up one window.

Page Down Move down one window.

Return/Enter Move cursor to the beginning of the following line.

Home Moves the cursor according to how many times the key is pressed:

1. Move to the left side of a line.
2. Move to the top of the window.
3. Move to the beginning of text.
4. Move to the end of text.

Deleting Characters

Backspace Delete the character to the left of the cursor.

Delete Delete the current character.

Line Clear Delete characters to the right.

Line Delete Delete the entire line.

Inserting Characters

Insert Pushes characters to the right.

Line Insert Inserts a blank line.

Getting Help

At any point where Script-IV is waiting for you to enter something, you can press the F6 key and get
instructions. In addition to help at menus and prompts, Script-IV provides a help network within the script
editor itself. You can use the on-line help in the script editor as a reference when creating scripts. In many
cases there are different levels of help you can access by pressing the F6 key again.

9
Copyright © 2009 Thoroughbred Software International, Inc.

For example, if you are defining a script, you can press the F6 key at the SCRIPT Name: field to learn
more on how to name a script. The following screen will be displayed:

A help window displays information on valid values for script names. Many help windows enable you to
retrieve more detailed information on a subject by pressing the F6 key again. In this case, pressing the F6
key will display the following screen:

10
Copyright © 2009 Thoroughbred Software International, Inc.

A second help window is displayed. It contains information on the keys you can use in the help system.
To return to the previous help window, you can press the F4 key. To return to the SCRIPT Name: field,
press the F4 key again.

Script Definition Lookup

To lookup existing scripts, you can press the F2 key on the SCRIPT Name field. A screen similar to the
following screen will be displayed:

Each entry displays the script name, a description of the script, the number that specifies the type of
script, the date the script was last modified, the date the script was last compiled, and the time the script
was last compiled. You can use the Page Down, Page Up, or arrow keys to display information on all the
scripts in the list.

To select and edit a script you can use the Page Down, Page Up, up arrow, or down arrow keys to
move to the name of the script you plan to modify and press the Enter key. You will be returned to the
Script Definition screen where you can edit the selected script.

If you decide to exit from the script list, press the F4 key twice.

How to Structure a Script

Before you enter a script into Source-IV or the script editor you must consider the enforced structure and
the optional structure of the script. Enforced structure is the set of requirements a script must meet before
it can be compiled and executed. Optional structure is the set of techniques you can use to make scripts
more readable and easier to maintain.

11
Copyright © 2009 Thoroughbred Software International, Inc.

Enforced Structure

Enforced structure includes the following requirements:

• identifying the beginning of a script.

• identifying the procedures and commands in a script. Data declarations, procedure names, and the
.LONGVAR, .SHORTVAR, and .PREC commands must begin in the leftmost column. All other
Script-IV commands must begin at least one tab stop from the left margin. Command elements must
be separated by at least one space.

Scripts are divided into the Data Environment Section, which is optional, and the Procedures Section,
which is required for most scripts. Only the Type 5 (copy) script, discussed in Subsection 2.3.6, does not
require a Procedures Section. The Data Environment Section and the Procedures Section are described
below.

DATA ENVIRONMENT SECTION

This section is located at the beginning of the script. If you plan to use dictionary definitions, such as
formats, screens, views, or links, you must declare them in this section. The type of script you plan to
write and the order of the declarations of dictionary definitions help to create the data environment for a
script. For more information on script types, see the section on Different Types of Scripts in this chapter.

Data Declarations Each data declaration, except for DN, consists of a data declaration
command followed by the name of a dictionary definition or 4GL
dataname. The command must begin in the leftmost column of the
screen and the definition name must be indented at least one tab stop
on the same line. For example:

VN 4SCUST, 4SSLSRP, 4SINVEN
LN 4SSALDT
SN 4STOPSC1, 4STOPSC2, 4SBOTSCR
DN INPUT-FLAG (1), VIEW -FLAG (1),
DN TEXT-FLAG (1)
DN TAX-RATE (2.0)

VN, LN, SN, and DN are data declaration commands. Each data
declaration, except for the DN declarations, specifies at least one
dictionary definition or 4GL dataname. More than one declaration is
allowed on a line if the definition names are separated by commas or
spaces.

The order of data declarations is important. When a script is
compiled, the Script-IV compiler builds a data name table. Data
names are placed in the table as they are encountered. In the example
above, the 4SCUST view defined in the VN statement is associated
with the 4SCUST format and the 4SSLSRP view is associated with
the 4SSLSRP format. When a script that uses these data declarations
is compiled, the data names defined in the 4SCUST format precede
the data names defined in the 4SSLSRP format.

12
Copyright © 2009 Thoroughbred Software International, Inc.

There is a possibility that duplicate data names will be placed in the
table. When a script specifies a data name, the compiler searches for
the first occurrence of the data name in the table. Using the example
above, the 4SCUST format and the 4SSLSRP format both contain
the SALES-REP-CODE data element. A script that specifies
SALES-REP-CODE accesses the value defined for
SALES-REP-CODE in the 4SCUST format because 4SCUST is
declared before 4SSLSRP.

To access a different occurrence of the data name, the data name
must be qualified by preceding it with a format name and a period.
Using the example above, to access the value of the
SALES-REP-CODE data element contained in the 4SSLSRP
format, the script must specify the data name as
4SSLSRP.SALES-REP-CODE. However, to access the value of
the SALES-REP-CODE data element contained in the 4SCUST
format, the script can specify SALES-REP-CODE or
4SCUST.SALES-REP-CODE.

For more information on data declaration commands see the
Script-IV Language Reference. For more information on dictionary
definitions see the Dictionary-IV Reference Manual.

Compile-Time Definitions

Compile-time definitions contain data that is resolved when the
script is compiled. They include the definition names specified in
data declarations and script names used in INCLUDE commands:

Definition Data Declaration Command

Data Name DN
Format Name FN
Link Alias LA
Link Name LN
Screen Name SN
View Name VN

Definition Command

Script Name INCLUDE

When specified in Script-IV commands, compile-time definitions are
not enclosed by quotation marks. They cannot be used as parameters
or passed to a command in a data name or variable. They must be
fully specified, for example, OPEN SCREEN CUSSCRN1.

13
Copyright © 2009 Thoroughbred Software International, Inc.

Run-Time Definitions

Run-time definitions contain data that is resolved when the script is
executed. They include all program names, on-line help, message
dictionary definitions, and script names except when used in the
INCLUDE command:

Definition Command

Message Dictionary All Applicable
On-Line Help All Applicable
Program Name All Applicable
Script Name All except INCLUDE

You do not have to declare these definitions before they are specified
in Script-IV commands. They can be used in string constants,
variables, data names, or expressions. These definitions can be
soft-coded in your script, for example, OPEN MESSAGES
"ARMSGS" or OPEN MESSAGES MESSAGE-LIST.

Data Names Data names can be defined to hold string, integer, or decimal data.
Additional attributes can be specified. Data names only hold a single
type of data. For example, if CUS-NAME is defined, it is handled as
a single element. If it needs to be handled as a first and last name,
you must define it as two parts, for example, CUS-NAME-FIRST
and CUS-NAME-LAST.

Data names can be used in expressions, functions, assignments, and
calculations. A data name is limited to a length of 20 characters.
Valid characters are uppercase and lowercase alphabetic characters,
numerals, the hyphen character, and the underscore character. Data
names must not contain a period or any special characters that may
cause a conflict in Script-IV syntax. Data names must not conflict
with any procedure names, declared format, link, screen, or view
names, or keywords. If a data name has the same name as a system
variable, the data name takes precedence.

Because data names are treated as single elements in scripts,
substring operations cannot be performed on data names. However,
the value in a data name can be moved to a variable on which string
operations can be performed. Data names and variables can be used
interchangeably in Script-IV syntax, except when specifically stated
otherwise.

The four types of data names that can be used in Script-IV are local
format data names, global format data names, link alias data names,
and local variables.

14
Copyright © 2009 Thoroughbred Software International, Inc.

Local Format Data Names

Local format data names defined in a format can be used in a script if
the format has been declared by an FN command. These local format
data names are dictionary-based because the format definition
resides in Dictionary-IV.

When used in a script, these data names can, and in some cases must,
be qualified by the format name. The name of the format must
precede the data name delimited by a period, for example:
ARFORMAT.CUS-NUMBER. This is necessary if your script uses
data names that match in multiple formats.

For more information on local format data names see the description
of the FN command in the Script-IV Language Reference.

Global Format Data Names

Global format data names are also defined in a format that resides in
Dictionary-IV. The global format name always consists of a #
(pound sign) followed by three to eight characters.

The global format is not declared in the Data Environment section,
but there are a number of ways to include global format data names
in a script. For more information on global format data names see the
section on Formats and data names in the Thoroughbred Basic
Reference Manual.

The data in a global format is separate and independent from the data
in a local format.

Link Alias Data Names

For each link alias declared in the script, a duplicate format with an
additional set of matching data names is available to the script. To be
accessed, these data names must be qualified by the link-name-alias
rather than the format name. For more information on link alias data
names see the description of the LA command in the Script-IV
Language Reference.

Local Variables

Local variables can be defined in a script using the DN data
declaration command. These local variables do not reside in the
dictionary but are handled much like a local format data name. They
are not qualified by a format name or other name, and therefore must
be unique among any other local variables or data names used in a
format. For more information on the DN data declaration command
see the description of the DN command in the Script-IV Language
Reference.

15
Copyright © 2009 Thoroughbred Software International, Inc.

Physical and Logical Formats During file maintenance, formats are used to access data in files. The
format is linked to a physical data file through the link definition.
This is a physical format, which describes a record and the data
elements in the record along with element characteristics, defaults,
valid values, and related data entry restrictions.

In scripts, a format can be used independently of a data file or link.
This is a logical format, which can function like a data name or a
variable. It can be assigned a value, its value can be printed or passed
to another script, and it can generally be manipulated as an item of
data in several commands.

The ability to manipulate a logical format provides greater freedom
in script design. The following two examples each describe a
different way to collect two data records and write them to two files.

Formats for Examples 1 and 2:

Format ONE(for screen ONE and LINK-ONE):

CUS-CODE
CUS-NAME
CUS-ADDRESS
SLS-CODE

Format TWO(for screen TWO and LINK-TWO):

SLS-CODE
SLS-NAME

Format ABC (for screen ABC; no link):

CUS-CODE
CUS-NAME
CUS-ADDRESS
SLS-CODE
SLS-NAME

The first example uses two independent screens and two physical
formats.

Example 1:

PRINT SCREEN ONE
INPUT SCREEN ONE
ADD LINK-ONE
PRINT SCREEN TWO
INPUT SCREEN TWO
ADD LINK-TWO

16
Copyright © 2009 Thoroughbred Software International, Inc.

Screen ONE is printed, then used to input data into format ONE. The
data in format ONE is added to the data file using LINK-ONE. The
same procedure is performed for screen TWO, format TWO, and
LINK-TWO. In this example, the two screens can be displayed and
manipulated independently of each other.

The second example accomplishes the same task as the first example
using one screen with one logical format and two physical formats.

Example 2:

PRINT SCREEN ABC
INPUT SCREEN ABC
LET ONE = ABC
ADD LINK-ONE
LET TWO = ABC
ADD LINK-TWO

Screen ABC is printed then used to input data into format ABC.
Format ABC contains data names from two different physical
formats: ONE and TWO. Format ONE is loaded with data in a
format assignment statement, and the data in format ONE is added to
the data file using LINK-ONE. Format TWO is loaded with data in a
format assignment statement, and the data in format TWO is added
to the data file using LINK-TWO. In this example, a single screen is
used to collect data.

Constants Constants are data elements that do not change value during script
execution. Constants are also called literals because values such as
1.25 or "string" are literal values. There are two types of constants: .

• Numeric constants can be positive or negative numerals in
integer, fixed point, or floating-point format.

• String constants include ASCII characters delimited by quotes,
such as "ABC", or hexadecimal values delimited by dollar
signs, such as 414243.

For more information on constant values see the Thoroughbred Basic
Reference Manual.

Elastic Variables Elastic variables contain values that can change during execution.
Elastic variables can dynamically change length. They are not
declared in the data declaration area. Do not confuse local variables,
which are dictionary-based data names, with the elastic variables
described below..

17
Copyright © 2009 Thoroughbred Software International, Inc.

Elastic variables are not dictionary-based. They provide another way
of holding and manipulating data. Elastic variables do have the
requirements of the data name definitions described above, but
elastic variables do not promote data independence. They can be
used to manipulate strings, to create temporary work areas, and to
fulfill various formatting requirements.

Data names and elastic variable names can be used interchangeably
in Script-IV syntax, except when specifically stated otherwise.

The types of elastic variables that can be used in Script-IV are elastic
numeric variables and elastic string variables.

Elastic Numeric Variables

Elastic numeric variables contain numeric values. These values can
be integers, fixed-point numbers, or floating point numbers. You can
use the LET command to assign numeric values to the elastic
numeric variables you define.

For more information on how to define elastic numeric variables see
the Thoroughbred Basic Reference Manual. To establish control of
naming conventions for elastic variables please refer to the
descriptions of the .LONGVAR and .SHORTVAR commands in
the Script-IV Language Reference. To specify how integer values are
rounded please refer to the descriptions of .PREC and PRECISION
in the Script-IV Language Reference.

Elastic String Variables

Elastic string variables contain string values. These values are
non-numeric values that can range up to 65000 bytes long. You can
use the LET command to assign string values to the elastic string
variables you define.

For more information on how to define elastic string variables see
the Thoroughbred Basic Reference Manual.

Restrictions on Elastic Variables

Under some circumstances you cannot define elastic variables with
certain names. This restriction applies to 8INPUT Pre/Post
Processing scripts and File Maintenance Pre/Post Processing scripts.
For a list of restricted elastic variable names, please refer to on-line
documentation.

You cannot define a Script-IV reserved word or a Thoroughbred
Basic reserved word as an elastic variable name. For a list of
reserved words please refer to the Script-IV Language Reference.

18
Copyright © 2009 Thoroughbred Software International, Inc.

System Variables System variables are numeric or string variables that Script-IV
defines to help you manage certain types of tasks. In most cases,
these variables interact with a Script-IV command. .

Examples of Script-IV system variables include:

VARIABLE Interacts with

COLUMN INPUT SCREEN
ESCAPE ESCAPE-KEY
FIELD INPUT SCREEN
FILE-SUFFIX OPEN
LENGTH INPUT SCREEN
LINE INPUT SCREEN
MENU-PARMS Not Applicable
SYSTEM-DATE SET
SYSTEM-TIME SET
TERM-KEY INPUT MESSAGE
 INPUT SCREEN
TERMINAL-DATE SET
TEXT-END READ

For more information on these system variables see the descriptions
in the Script-IV Language Reference.

PROCEDURES SECTION

The procedures section consists of at least one independent procedure that contains Script-IV commands.
Procedures are the main body of the script.

The first procedure in a script is the main procedure and controls all other procedures. When the main
procedure is completed, the script automatically terminates. If there are no commands in the main
procedure, the script will automatically terminate without processing further procedures.

Give some thought to the design and organization of script procedures. Long-term productivity can be
increased by spending time in the analysis and design phases of product development. Prior planning can
decrease development time, enhance script readability, and facilitate script maintenance.

A procedure consists of a procedure name followed by one or more script commands.

Procedure Names The procedure name:

• identifies the body of commands as a unique procedure within
the script.

• must be different from all other procedure names in the script or
in any included script. The procedure name must not conflict
with any reserved words.

19
Copyright © 2009 Thoroughbred Software International, Inc.

• must begin in the leftmost column of the screen and must appear
on a line by itself. However, comments preceded by !
(exclamation point) can follow the procedure name.

• can be from 1 through 64 characters long. It cannot contain space
characters. The first 20 characters must be unique.

• must not be broken or fall onto two lines when referred to by a
command.

• can consist of uppercase or lowercase characters, numerals, and
the - (hyphen) character.

Script-IV Commands Script-IV commands can be grouped into a procedure that performs a
task. Since the commands tell the system what to do rather than how
to do it, the procedure is self-documenting.

Commands perform operations on data elements such as constants
and variables, control input and output, and specify how scripts are
executed and processed. For example:

• To assign a value to a variable, you can use the LET or SET
command.

• To specify a branch in execution, you can use the
IF/THEN/ELSE/ENDIF command.

• To control file access, you can use the OPEN, LOCK,
UNLOCK, and CLOSE commands.

• To control I/O to disk, you can use the ADD, CHANGE,
DELETE, or READ command.

• To use Dictionary-IV definitions, you can use the INPUT
SCREEN, INPUT MESSAGE, PRINT HELP, PRINT
VIEW, or CONNECT commands.

Commands must be indented at least one tab stop from the first
column on the screen. Additional indention and line spacing can be
used for readability.

Commands are sensitive to spaces. Use a space to separate all
elements within a command such as the command, clauses, options,
parameters, data names, and so on. This is required for the compiler
to accept the commands and, if not used, may cause a syntax error.
The only exceptions to this are the () (parentheses) characters when
they are used for grouping. In this case, a space precedes but does
not follow a left parenthesis, and a space follows but does not
precede a right parenthesis.

20
Copyright © 2009 Thoroughbred Software International, Inc.

Optional Structure

Optional structure, or appearance, includes the following:

• command indention

• line spacing

• punctuation

Although optional structure does not affect script compilation and execution, it can have an impact on
readability and maintenance. Because optional structure provides flexibility, it is important to set
standards of consistency for your scripts.

The Script-IV language is a self-documenting language designed for readability and easy maintenance.
Command syntax is simple and descriptive. Software developers who prefer terse code can build readable
procedures. However, script readability can be enhanced by using the following options.

Command Placement More than one command can be placed on one line of a script, but
this coding style can produce procedures that are hard to read.
Starting a Script-IV command on a new line helps produce readable
code.

Many Script-IV commands contain clauses. Placing each clause on a
new line enhances readability.

Comments Comment or remark lines are not compiled. Any line that contains an
* (asterisk) in the leftmost column is treated as a comment line. You
can use comment lines as dividers to separate procedures or
segments within a procedure. For example:

*---
* Customer Record Maintenance
*---

Optional Syntax Elements Optional syntax elements do not affect command function; they
enhance readability. Three common optional elements are IS, ARE,
and PROCESS. For example, the following two clauses perform the
same function:

MISSING TOTALS-PROCEDURE

MISSING KEY PROCESS IS
 TOTALS-PROCEDURE

Optional Punctuation The ; (semicolon) and . (period) can be used to mark the end of a
command. The script compiler ignores these punctuation marks.

21
Copyright © 2009 Thoroughbred Software International, Inc.

Optional Line Spacing Blank lines can be used to separate logical segments of your script.
You can separate procedures or groups of procedures from each
other, or separate one command from another. Blank lines are not
compiled. Because scripts are compressed before they are stored on
disk, blank lines do not require storage space.

Optional Indention You can indent commands and their subordinate clauses to highlight
the clauses and display processing hierarchy. If you develop and
follow your own standards for indenting, it can strengthen the
structure of your scripts.

Example 1

You can use indention for a command that requires many clauses,
and use a blank line to separate the command from the next
command:

CHANGE CUSFIL USING KEY CUS-NUMBER
 BUSY PROCESS IS BUSY-MESSAGE
 END PROCESS IS END-OF-FILE
 PROCESSING IS UPDATE-CUS
 TEXT "A"
 WINDOW LINE IS 15
 COLUMN IS 0
 CHARACTERS PER-LINE ARE 60
 NUMBER LINES ARE 6

IF CUS-NUMBER > "T0000" THEN
 PRINT SCREEN CUSSCRN1 CLEAR
 DO LOCAL-CUSTOMERS
ELSE
 DO COUNT-MAIL-ORDER-CUSTOMERS
 IF COUNT1 > 1000 THEN
 PRINT MESSAGE "N,150"
 IF MAIL-ORDER-FLAG = "y" THEN
 DO BULK-MAIL
 ENDIF
 ENDIF
 DO CLOSE-MAIL-ORDERS
ENDIF

22
Copyright © 2009 Thoroughbred Software International, Inc.

Example 2

The first part of this example demonstrates lack of structure and poor
readability:

IF SORT-NO = 0 THEN
 CHANGE ATAPMSTR USING KEY NEXT
 PROCESSING IS EDIT-RECORD;BUSY IS
 BUSY-RECORD;END IS END-OF-MAIN-FILE
 ELSE CHANGE ATAPMSTR USING KEY SORT
 SORT-NO NEXT
 PROCESSING IS EDIT-RECORD;BUSY IS
 BUSY-RECORD;
 END IS END-OF-MAIN-FILE
ENDIF

The second part of this example uses the same command and
demonstrates how optional structuring can increase readability:

IF SORT-NO = 0 THEN
 CHANGE ATAPMSTR USING KEY NEXT
 PROCESSING IS EDIT-RECORD
 BUSY IS BUSY-RECORD
 END IS END-OF-MAIN-FILE

ELSE
 CHANGE ATAPMSTR USING KEY SORT SORT-NO
 NEXT
 PROCESSING IS EDIT-RECORD
 BUSY IS BUSY-RECORD
 END IS END-OF-MAIN-FILE
ENDIF

Different Types of Scripts

You must specify the script type when you define the script. You can select one of several different types:
primary, continuation, overlay, API pre/post processing, file maintenance pre/post processing, copy,
public, and utility.

The type of script determines how the script is compiled. This affects the command used to start the
script, the script data environment, what happens when the script terminates, and other execution
characteristics.

In this chapter's description of script types, the following terms are used:

Script-IV Data Environment The sequence and type of declared data and open message
dictionaries that are shared by a script set. Declared data can include
links, screens, views, formats, and local data names but not elastic
variables or arrays.

3GL Data Environment Elastic variables and arrays.

23
Copyright © 2009 Thoroughbred Software International, Inc.

Parent Script A primary script that is a starting point for execution of a script set.
The parent script contains the initial data declarations that are
common to the script set.

Script Set A script or group of related scripts that share a common parent and
Script-IV data environment.

Executing Script A script that uses the RUN command to execute another script.

Type 1 - Primary Script

The primary script is used as a starting point for processing. You can execute this script from:

• Any Dictionary-IV menu definition using the type "P".

• An Dictionary-IV menu, using the /script-name command.

• Another script, using the RUN script-name command.

• A 3GL program or Thoroughbred Basic Console Mode, using the RUN program-name directive.

This script automatically clears the screen at the beginning of execution and initializes the Script-IV and
3GL data environments. It closes all files and clears all variables, replaces any other program in memory,
and automatically passes data to certain other script types. When it terminates, execution returns to the
last selected Dictionary-IV menu.

Type 2 - Continuation Script

This script serves as the continuation of a primary script or another continuation script.

You can execute this script from a primary or continuation script using the RUN script-name command.
This script keeps all files open, retains the values contained in variables, replaces the current primary or
continuation script in memory, accepts data from a primary or continuation script, and passes data to
certain other script types. When it terminates, execution returns to the last selected Dictionary-IV menu.

The Script-IV data environment is shared with the parent script and script set. It must be declared in the
continuation script using the same sequence and type of data as the parent script. You can create a copy
module containing the data declarations and use the INCLUDE command to incorporate them into any
script.

The 3GL data environment is shared with the parent script.

Type 3 - Overlay Script

This script serves as an overlay to a primary, continuation, or another overlay script. It is a specialized
type of continuation script that conserves memory and functions somewhat differently from a
continuation script.

24
Copyright © 2009 Thoroughbred Software International, Inc.

You can execute an overlay script from a primary, continuation, or overlay script using the RUN
OVERLAY script-name command. The overlay script accepts the entire 4GL environment from the
parent script and returns the environment to the parent script. This script operates in its own memory
segment. When it terminates, execution returns to the executing script at the command following the
RUN OVERLAY command.

The Script-IV data environment is shared with the parent script and script set. It must be declared in the
overlay script using the same sequence and type of data as the executing script. You can create a copy
module containing the data declarations and use the INCLUDE command to incorporate them into any
script.

This script provides an independent 3GL data environment, which can include variables and numeric
arrays, which is not affected by and does not affect the 3GL data in the executing script.

The RUN script-name command is not allowed in an overlay script. However, you can use the RUN
PUBLIC script-name and RUN OVERLAY script-name commands.

Only one ESCAPE-KEY procedure command can be specified in an overlay script.

Type P - API Pre/Post Processing Script

This script type can be executed before or after a field is entered in file maintenance. It is designed to be
executed from the 8INPUT API, the CONNECT SCREEN command, or the CONNECT VIEW
command. The script name is specified in the pre-process or post-processing attribute of a data element in
a format definition.

This script is invoked from file maintenance. It cannot be invoked from another script or by the INPUT
SCREEN command.

As an example, you can use this script type to calculate sets of numbers before a user performs data entry
or use this script type to calculate sets of numbers after a user performs data entry.

When you specify the script name in the pre/post-processing attribute in the format definition, the
program execution indicator (exec-indicator) must be 0 (CALL). If you specify a value for string-value, it
will be contained in the VAV$ variable, which is described below.

The script must contain the data declaration for the screen definition as the first line in the script. For
Dictionary-IV database maintenance, you must use a custom screen definition rather than the default
screen.

Following is a list of 3GL variables used by an API Pre/Post Processing Script:

VAV$ contains the string value defined in the Pre/Post processing definition.

SPARM$[ALL] is the screen array.

FPARM$[ALL] is the format array.

FD$ is the entire data record (before field edit).

]7$ is reserved for system use.

25
Copyright © 2009 Thoroughbred Software International, Inc.

W1$ contains the field entry, which contains the entered data.

SE is the field control value.

W$ is reserved for system use.

For more information on these variables see the on-line documentation under API Services, 8INPUT,
Pre/Post Proc. For more information on the pre/post processing section of a format see the Formats
chapter of the Dictionary-IV Developer Guide

Although this script type was designed to be executed from the 8INPUT API, the CONNECT SCREEN
command, or the CONNECT VIEW command, it can also be executed from single-record maintenance
(SRM) or multi-record maintenance (MRM). For information on a script type designed to be executed
from SRM or MRM, please refer to the following subsection.

Type 4 - File Maintenance Pre/Post Processing Script

This script type can be executed before or after a field is entered in file maintenance. It is designed to be
executed from single record maintenance (SRM) or multi-record maintenance (MRM). The script name is
specified in the pre-process or post-processing attribute of a data element in a format definition.

This script is invoked from file maintenance. It cannot be invoked from another script or by the INPUT
SCREEN command.

As an example, you can use this script type to calculate sets of numbers before a user performs data entry
or use this script type to calculate sets of numbers after a user performs data entry.

When you specify the script name in the pre/post-processing attribute in the format definition, the
program execution indicator (exec-indicator) must be 0 (CALL). If you specify a value for string-value, it
will be contained in the S8$ variable, which is described below.

The script must contain the data declaration for the screen definition as the first line in the script. For
Dictionary-IV database maintenance, you must use a custom screen definition rather than the default
screen.

Following is a list of 3GL variables used by a File Maintenance Script:

S8$ contains the string value defined in the Pre/Post processing definition.

E1$ is reserved for system use.

A8$ is the screen attribute entry for the current data element:

1,1 Screen column (binary)
2,1 Screen line (binary)
3,1 Screen entry length (binary)
4,1 Fixed attribute entry number (binary)

V9 is the current screen attribute table entry number.

F3$ contains data name contents before input.

26
Copyright © 2009 Thoroughbred Software International, Inc.

F4$ contains data name contents after input. If you want to automatically generate the data field
contents before input, using preprocessing procedures sets the contents of this variable, and, when
returned to maintenance, the contents will automatically be displayed.

C is the Terminal Control Value (CTL).

S$ contains the data record read for File Lookup.

For more information on these variables see the on-line documentation from the pre-process or
post-processing attribute field of a data element in a format definition. For more information on the
pre/post processing section of a format see the Formats chapter of the Dictionary-IV Developer Guide.

Although this script type was designed to be executed from single-record maintenance or multi-record
maintenance, it can also be executed from the 8INPUT API, the CONNECT SCREEN command, or the
CONNECT VIEW command. For information on a script type designed to be executed from the
8INPUT API or the CONNECT commands, please refer to the preceding subsection on the API Pre/Post
Processing Script.

Type 5 - Copy Script

This script is not executed or compiled by itself. A copy script is a script fragment that can contain
common groups of directives, functions, or a data environment. Other scripts can use the INCLUDE
command to copy this information, which becomes part of that script at compile time. By placing
common code in one location, copy scripts help you avoid duplication and make application maintenance
easier.

Type 6 - Public Script

This script serves as an independent subroutine to a primary, continuation, overlay, or another public
script. Having an independent data environment, the public script does not belong to a script set or have a
parent script.

You can execute a public script from a primary, continuation, overlay, or public script using the RUN
PUBLIC script-name command. Public scripts do not automatically pass any data and operate with an
entirely independent data environment. A public script only knows what is explicitly passed to it and what
it declared within it. When it terminates, execution returns to the executing script at the command
following the RUN PUBLIC command.

This script provides an independent Script-IV data environment that is not affected by and does not affect
the data environment in the executing script, but values can be passed to and returned from a public script.

A public script must contain the ENTER PUBLIC command as the first command line in the script after
the data declaration. The 3GL data environment is initialized for a public script, except for the variables
received through the ENTER PUBLIC command.

The RUN script-name command is not allowed in a public script. However, you can use the RUN
PUBLIC script-name command.

Only one ESCAPE-KEY procedure command can be specified in a public script.

27
Copyright © 2009 Thoroughbred Software International, Inc.

Type U - Utility Script

This script is like a primary script except that it does not automatically clear the screen at the beginning of
execution and it does not initialize the Script-IV or 3GL data environments. When it terminates, execution
returns to the last selected Dictionary-IV menu.

Script Execution Diagrams

The following pages contain diagrams and charts that illustrate how different types of scripts execute and
interact with one another, the data environment for some types of scripts, and how memory is used as
scripts execute.

The diagrams and charts are:

• Primary Script Execution

• Continuation Script Execution

• Overlay Script Execution

• Public Script Execution

• Script Type Execution and Memory Usage

28
Copyright © 2009 Thoroughbred Software International, Inc.

Primary Script Execution

29
Copyright © 2009 Thoroughbred Software International, Inc.

Continuation Script Execution

30
Copyright © 2009 Thoroughbred Software International, Inc.

Overlay Script Execution

31
Copyright © 2009 Thoroughbred Software International, Inc.

Public Script Execution

32
Copyright © 2009 Thoroughbred Software International, Inc.

Script Type Execution and Memory Usage

 Memory Use ⇒ ⇒ ⇒
T PRIMARY SCRIPT
I RUN PUBLIC "P1" PUBLIC P1
M ⇒ RUN PUBLIC "P2" ⇒ PUBLIC P2
E ⇐ TERMINATE
⇓
 RUN PUBLIC "P3" ⇒ PUBLIC P3
 ⇐ TERMINATE
⇓ ⇐ TERMINATE

 RUN OVERLAY "01" ⇒ OVERLAY 01
⇓ ⇐ TERMINATE

 CALL "3GLPUB1" ⇒ TSI Basic 3GLPUB1
⇓ ⇐ EXIT
 RUN "C1"
 ⇓
⇓ CONTINUATION SCRIPT
 RUN PUBLIC "P4" ⇒ PUBLIC P4
 RUN PUBLIC "P5" ⇒ PUBLIC P5
⇓ ⇐ TERMINATE
 ⇐ TERMINATE

⇓ RUN OVERLAY "02" ⇒ OVERLAY 02
 RUN OVERLAY "03" ⇒ OVERLAY 03
 ⇐ TERMINATE
⇓ ⇐ TERMINATE
 TERMINATE
 ⇓
 MENU

Note: Primary and continuation scripts displace each other in memory. Overlay, public, and 3GL public

scripts accumulate in memory until terminated. In all cases, an EXIT or TERMINATE returns
control to the command that follows the RUN or CALL.

33
Copyright © 2009 Thoroughbred Software International, Inc.

SSCCRRIIPPTT--IIVV TTIIPPSS AANNDD TTEECCHHNNIIQQUUEESS
Script-IV provides advanced data handling features. This chapter contains the following sections:

• Terminal Keyboard Values describes how to manage certain types of data generated by Script-IV.

• Escape Processing describes how to use the Escape key to interrupt script
execution.

• Using Keys describes how to use KEY references with secondary keys and with numeric and date
keys.

• CONNECT Commands describes how to use CONNECT commands.

• Database Maintenance and Script-IV provides a list of features exclusive to database maintenance.

• Interface to Thoroughbred Basic describes the interface between Script-IV and the Thoroughbred
Basic third generation language.

Terminal Keyboard Values

The Script-IV TERM-KEY variable enables you to:

• specify actions that will be taken when a function key is pressed.

• keep track of which key was last pressed during script execution.

• set a time-out value for data entry.

For more information on the TERM-KEY variable see the description in the Script-IV Language
Reference.

Escape Processing

Normal script execution can be interrupted by pressing the Escape key. Most terminals provide an
Escape key or a keystroke sequence that performs the escape function. The script specifies how the
escape will be processed. There are two ways of handling escape processing in Thoroughbred Script-IV:

• Standard escape processing, which is controlled by the ESCAPE variable

• Custom escape processing, which is controlled by the ESCAPE-KEY command

Standard Escape Processing

The operator presses the Escape key during script execution. The following message is displayed:

Terminate (Y/N)?

34
Copyright © 2009 Thoroughbred Software International, Inc.

Standard escape processing means that the operator can choose to halt the script or continue script
execution. If standard escape processing is disabled, pressing the Escape key will have no effect and the
script will continue to execute. You can enable or disable standard escape processing by setting the value
of the ESCAPE variable in the script.

Setting the ESCAPE variable to "Y" enables the standard escape procedure:

LET ESCAPE = "Y"

Setting the ESCAPE variable to "N" disables the standard escape procedure:

LET ESCAPE = "N"

The standard processing procedure checks the value of this variable to see if it is enabled. If the ESCAPE
variable is not set in a script, the default is Y, and standard escape processing is enabled. For more
information on the ESCAPE variable see the Script-IV Language Reference.

Custom Escape Processing

The ESCAPE-KEY command provides the ability to design custom escape processing. The command
syntax is ESCAPE-KEY procedure|OFF|ON.

ESCAPE-KEY procedure This ESCAPE-KEY command specifies a procedure to execute when the
Escape key is pressed. This command overrides the value of the ESCAPE
variable and disables standard escape processing. The ESCAPE-KEY
procedure command also replaces any previous custom escape processing set
in the script.

ESCAPE KEY OFF This command turns off custom escape processing. The standard escape
processing procedure is enabled.

ESCAPE-KEY ON This command reactivates the last specified custom escape processing
procedure. If the script did not previously specify a custom escape processing
procedure, this command is ignored.

In primary and continuation scripts, the ESCAPE-KEY command can be used multiple times. The
custom escape processing set with the ESCAPE-KEY command overrides any previously defined
custom processing.

In public and overlay scripts, only one custom escape procedure should be specified. If multiple
ESCAPE-KEY commands are used, the last one encountered by the compiler is the only one executed.

For more information on the ESCAPE-KEY command see the Script-IV Language Reference.

Using Keys

This section describes how to use KEY references with the following types of keys:

• Secondary Keys

35
Copyright © 2009 Thoroughbred Software International, Inc.

• Numeric and Date Keys

Secondary Keys

When you use a KEY reference with secondary keys more than one match is possible. Because of this,
when a processing procedure is specified all records that match the specified key will be processed. If no
processing procedure is specified only the first match will be read.

Please consider the following examples:

READ link-name USING SORT n IS key-value
READ link-name USING SORT n IS NEXT

This example returns one record beyond the record where the closest match with key-value occurred.

READ link-name USING KEY SORT n IS key-value
 PROCESSING IS your-process

This example processes all records that match the key-value.

READ link-name USING KEY SORT n IS key-value

This example only processes the first record that matches the key-value.

Note: The SORT option specifies a sort definition that can be used to access the records in the file by a
secondary key. When a SORT option is used, a string value must be specified and the MISSING
KEY procedure is not valid. File access using a secondary key will access the record closest to
the specified key. A record will always be accessed unless an end of file is reached. For more
information see the description of the READ command in the Script-IV Language Reference.

Numeric and Date Keys

Note: The following information applies to date fields because they are numeric fields.

To use Script-IV to perform file input or output using a numeric key, you must manually pad the data in
Script-IV so that it matches the specifications in the format.

For example, if the OPLINES format uses a numeric key called SEQ-NUM defined with a length of 4.0
and a padding type of 3 (right justify and zero fill), the following command will pad the data when adding
a new record:

ADD OPLINES USING KEY STR(SEQ-NUM :"0000")

The spacing in the syntax of this command is significant.

For multi-part keys, you must pad any part of the key that is a numeric field. For example:

ADD OPLINES USING KEY CUS-CODE + STR(SEQ-NUM :"0000")

36
Copyright © 2009 Thoroughbred Software International, Inc.

There is an alternative to padding the numeric data every time you use it in a file input or output
command. To use a numeric key to maintain a sequence number, such as an invoice number, it may be
easier to define an alphanumeric key and manually convert the data to numeric form to increment it for
the next sequence number. For example:

LET ALPHA-SEQ-NUM = STR(NUM(ALPHA-SEQ-NUM) + 1:"0000")

A valid entry range specified in the format will not validate that only numbers are entered into the
alphanumeric sequence number field. For example, if ALPHA-SEQ-NUM has a length of 4 and a valid
entries range of 1,0000,9999, an entry of 000Z is accepted as valid (the valid entries range check
performs an entire string comparison).

CONNECT Commands

The CONNECT commands enable a script to connect to various object classes defined in Dictionary-IV,
such as help, menus, screens, and views. Additionally, CONNECT commands enable scripts to connect to
Query-IV queries or Report-IV reports.

The data in the objects and the functional capabilities of each class are available during script execution.
Use of CONNECT commands enables developers to focus on data objects and the classes used to define
them, which assures data independence and reduces the amount of procedural Script-IV code required to
make use of a data object.

The CONNECT commands enable concurrent development of data objects and scripts. They are designed
to promote fast, flexible prototyping and development.

CONNECT HELP

This command enables you to connect to a help definition specified in Dictionary-IV and display the help
text during script execution.

For more information on the CONNECT HELP command see the Script-IV Language Reference. For
more information on how to create a help definition see the Dictionary-IV Developer Guide.

CONNECT MENU

This command enables you to connect to a pop-up menu definition specified in Dictionary-IV and display
the menu during script execution.

For more information on the CONNECT MENU command see the Script-IV Language Reference. For
more information on how to create a menu definition see the Dictionary-IV Developer Guide.

CONNECT QUERY

This command enables you to connect to a Query-IV query, and display or print the query during script
execution.

37
Copyright © 2009 Thoroughbred Software International, Inc.

For more information on the CONNECT QUERY command see the Script-IV Language Reference. For
more information on how to create a query see the Query-IV Reference Manual.

CONNECT REPORT

This command enables you to connect to a Report-IV report, and display or print the report during script
execution.

For more information on the CONNECT REPORT command see the Script-IV Language Reference.
For more information on how to create a report see the Report-IV Reference Manual.

CONNECT SCREEN

This command enables you to connect to a screen definition specified in Dictionary-IV, display the
screen, and initiate single-record maintenance during script execution.

For more information on the CONNECT SCREEN command see the Script-IV Language Reference.
For more information on how to create a screen definition see the Dictionary-IV Developer Guide.

CONNECT VIEW

This command enables you to connect to a view definition specified in Dictionary-IV, display the view,
and initiate multi-record maintenance during script execution.

For more information on the CONNECT VIEW command see the Script-IV Language Reference. For
more information on how to create a view definition see the Dictionary-IV Developer Guide

Database Maintenance and Script-IV

The implementation of a feature sometimes depends upon its context, in this case features in Script-IV
and Dictionary-IV Database Maintenance. Whether a feature is implemented depends on how useful the
feature is and whether the feature has meaning in a given context.

For example, the format security settings for "Add Only" and "Change Only" have meaning in
Dictionary-IV Database Maintenance where "add mode" and "change mode" exist. However, these format
security settings have no meaning in Script-IV because these features were not implemented in Script-IV.

The following features are implemented for formats in Dictionary-IV Database Maintenance but not in
Script-IV:

• Security: Add Only

• Security: Change Only

• Valid Entries: File Lookup Read Option 1

• Delete Record Value

38
Copyright © 2009 Thoroughbred Software International, Inc.

• Audit

The following features are implemented for links in Dictionary-IV Database Maintenance but not in
Script-IV:

• Terminal Access

• Operator Access

• Password

• Audit

For more information on these features see the Dictionary-IV User Guide.

Interface to Thoroughbred Basic

Script-IV provides an interface to Thoroughbred Basic language elements and data constructs. This
interface adds functionality and flexibility to the Script-IV language by increasing the number of available
language elements and by providing more control over certain types of programming details.

This section contains the following subsections:

• Thoroughbred Basic Files describes how Script-IV can use data files created by Thoroughbred
Basic applications.

• Thoroughbred Basic Programs describes how to execute Thoroughbred Basic programs from
scripts.

For more information on Thoroughbred Basic see the Thoroughbred Basic Reference Manual.

Thoroughbred Basic Files

Script-IV can access data files created by a Thoroughbred Basic application. To use an existing data file
in a script, follow the procedure below:

1. Define the format definition to be used to access the data record.

2. Create a link, which references the format and the data file.

3. Access the file in Dictionary-IV file maintenance to verify that your format and link definitions are
correct.

4. Declare the link in your script.

5. Open the link in your script.

After you complete this procedure, you can use Script-IV file I/O commands to access the file through the
link name. For more information on Thoroughbred Basic data files see the Thoroughbred Basic Reference
Manual.

39
Copyright © 2009 Thoroughbred Software International, Inc.

Thoroughbred Basic Programs

Script-IV can execute Thoroughbred Basic programs. This feature enables you to access existing
Thoroughbred Basic applications in Script-IV. For more information on Thoroughbred Basic programs
see the Thoroughbred Basic Reference Manual.

Standard Thoroughbred Basic Program

To execute a standard Thoroughbred Basic program from a script you can use the RUN program-name
command. From this program, you can use the RUN program-name directive to execute another
Thoroughbred Basic program or a primary script or use the CALL program-name directive to execute a
Thoroughbred Basic public program.

For more information on the Script-IV RUN command see the Script-IV Language Reference. For more
information on the Thoroughbred Basic CALL and RUN directives see the Thoroughbred Basic
Reference Manual.

Thoroughbred Basic Public Program

To execute a Thoroughbred Basic public program from a script you can use the CALL program-name
command. From this program, you can use the CALL program-name directive to execute another
Thoroughbred Basic public program.

For more information on the Script-IV CALL command see the Script-IV Language Reference. For more
information on the Thoroughbred Basic CALL directive see the Thoroughbred Basic Reference Manual.

Migrating Programs to Scripts

You can migrate a Thoroughbred Basic application to Script-IV in stages by replacing software programs
with scripts. Scripts can emulate the appearance of existing software so that the look and feel remains
constant during the conversion. After the Thoroughbred Basic application is fully migrated, you can
enhance the applications with features inherent in the Dictionary-IV application development system.

40
Copyright © 2009 Thoroughbred Software International, Inc.

CCOOMMPPIILLIINNGG SSCCRRIIPPTTSS
NOTE: If you use Source-IV to edit scripts, you must compile the scripts from Source-IV. If you use the
Script-IV script editor to edit a script, you must compile the script from the script editor.

If you plan to use Source-IV to compile scripts, you can skip the section on How to Compile from the
Script Editor. However, the rest of the information in this chapter is relevant and useful.

For more information on Source-IV see the Source-IV Manual.

Introduction

You cannot execute a script until it has been compiled. The compiler produces a 3GL Thoroughbred
Basic program from the source script, a program listing, error messages, and error diagnostics. If no errors
occur, the resultant program can be executed.

The following sections are included:

• How to Compile from the Script Editor

• How to Compile from the Dictionary-IV Development Menu

• How to Use a Compile List

• How to Define Your Own Compile List

• How to Manage Compilation Errors

• Error Messages

41
Copyright © 2009 Thoroughbred Software International, Inc.

How to Compile from the Script Editor

Use the script editor to compile a single script. To compile from the script editor, you must access the
script you plan to compile, for example:

To begin the compilation process, press the F3 or F7 key. The following message will be displayed:

Do you want to save and compile (Y/N)?

Y starts the procedure.

N halts the compilation process. Control returns to the script editor.

42
Copyright © 2009 Thoroughbred Software International, Inc.

Press the Y key. The following screen will be displayed:

Script-IV fills in the compilation information. You must answer the question at the bottom of the screen:

Is the displayed information correct (Y/N)?

Y begins compilation using the displayed information.

N enables you to respecify the displayed information.

Press the Y key to compile the script. The script code will be listed as it is compiled. To stop the
compilation process at any time, press the Escape key.

Errors pause compilation. Take one of the following actions:

• To halt compilation, press the F4 key.

• To continue compiling after an error is encountered, press the
Enter key.

• If there is no response after 15 seconds, compilation continues as if the Enter key was pressed.

• If you started the compile from the Script-IV script editor, you can return to the script editor by
pressing the F1 key. You can fix the error, then press the F3 or F7 key to compile the script.

For more information on the errors you may encounter see the sections on How to Manage Compilation
Errors and Error Messages.

After the compiler finishes processing, you will be returned to the last active menu.

43
Copyright © 2009 Thoroughbred Software International, Inc.

How to Compile from the Dictionary-IV Development Menu

Use the Dictionary-IV Development Menu to compile a single script, a range of scripts, or a library of
scripts:

To compile from the Dictionary-IV Development Menu, type C and press the Enter key. The COMPILE
SCRIPTS screen will be displayed:

44
Copyright © 2009 Thoroughbred Software International, Inc.

You must answer the following questions:

Library:

Enter the name of the library that contains the scripts you plan to compile.

Select everything (Y/N)?

Select one of the following:

Y means every script in the library will be compiled.

N means you plan to specify a range of scripts to compile.

from name:
to name:

To define a range of scripts, you can use the following specifications:

• To specify all the scripts in the library, press the Enter key in the from name field and press the
Enter key in the to name field.

• To specify a range of scripts, type the name of the first script you plan to compile in the from name
field and the name of the last script you plan to compile in the to name field.

• To specify a single script, type the name of the script you plan to compile in the from name field and
press the Enter key in the to name field.

In most cases, you only need to type enough of a script name to identify it as a unique name, then press
the Enter key and let the system fill in the rest of the name.

using name mask:

A name mask enables you to select a set of scripts from a range of scripts. You do not have to compile all
the scripts in the range and you do not have to select individual scripts to compile one at a time. If you do
not plan to use a mask, press the Enter key.

Use the following information to define a mask:

• A mask is a string of characters used to test the string of characters in the script name. A script name
that matches the mask is selected for compilation.

• A mask can contain match and passing characters. A character in a script name must be the same
character as the match character and occur in the same position. The ? is the pass character, which
means that no match in this position is needed.

Mask action definition names
A? selects AB Ac A1
 bypasses aB cA 11

45
Copyright © 2009 Thoroughbred Software International, Inc.

After you have answered all of these questions, the following message will be displayed:

Is the displayed information correct (Y/N)?

Enter one of the following:

Y begins compilation using the displayed information.

N enables you to respecify the displayed information.

Press the Y key to compile. The name of each script and its description will be displayed as it compiles.
The script code will be listed below this information. To stop the compilation process at any time, press
the Escape key.

Errors pause compilation. To continue compiling after an error is encountered, press the Enter key. For
more information on the errors you may encounter see the sections on How to Manage Compilation
Errors and Error Messages.

After the compiler finishes processing, you will be returned to the COMPILE SCRIPTS screen.

How to Use a Compile List

A compile list is a list of scripts that need to be compiled before they can be executed. To maintain
applications, you can use the Generate Compile List and Compile from Generated List Utilities from the
Dictionary-IV Development Menu.

The Generate Compile List Utility searches through a range or library of scripts. It compares the change
date of the script, the change date of any copy script used by the script, and the change date of any
definition such as a format or screen used by the script, to the compile date. If any of these change dates
are more recent than the compile date, the utility puts the script in a compile list. After the library or range
is checked, you can specify another range or library to search for script names to add to the list.

The name of the compile list is 4GLCLtt, where tt is the terminal ID. Any compile list is unique to the
terminal where it is created. Each time you select the Generate Compile List Utility the compile list is
erased before a new list is created.

The Compile from Generated List Utility compiles the scripts in the compile list.

46
Copyright © 2009 Thoroughbred Software International, Inc.

How to Build a Compile List

To create a compile list, go to the Dictionary-IV Development Menu. Type 6 and press the Enter key. The
GENERATE COMPILE LIST screen will be displayed:

You must answer the following questions:

Library:

Enter the name of the library that contains scripts you plan to include in the compile list.

Select everything (Y/N)?

Select one of the following:

Y means every script in the library will be checked.

N means you plan to specify a range of scripts to check.

from name:
to name:

To define a range of scripts, you can use the following specifications:

• To specify all the scripts in the library, press the Enter key in the from name field and press the
Enter key in the to name field.

• To specify a range of scripts, type the name of the first script you plan to compile in the from name
field and the name of the last script you plan to compile in the to name field.

47
Copyright © 2009 Thoroughbred Software International, Inc.

• To specify a single script, type the name of the script you plan to compile in the from name field and
press the Enter key in the to name field.

In most cases, you only need to type enough of a script name to identify it as a unique name, then press
the Enter key and let the system fill in the rest of the name.

using name mask:

A name mask enables you to select a set of scripts from a range of scripts. You do not have to compile all
the scripts in the range and you do not have to select individual scripts to compile one at a time. If you do
not plan to use a mask, press the Enter key.

Use the following information to define a mask:

• A mask is a string of characters used to test the string of characters in the script name. A script name
that matches the mask is selected for compilation.

• A mask can contain match and passing characters. A character in a script name must be the same
character as the match character and occur in the same position. The ? is the pass character, which
means that no match in this position is needed.

Mask action definition names
A? selects AB Ac A1
 bypasses aB cA 11

After you have answered all of these questions, the following message will be displayed:

Is the displayed information correct (Y/N)?

Enter one of the following:

Y begins checking change dates using the displayed information.

N enables you to respecify the displayed information.

Press the Y key to check change dates. If no script needs to be compiled, the compile list will be empty.
After the utility finishes processing, you will be returned to the GENERATE COMPILE LIST screen.

How to Compile from a Compile List

To compile all of the scripts on the compile list, go to the Dictionary-IV Development Menu. Type 7 and
press the Enter key. The following message will be displayed:

Do you want to compile from 4GLCLtt generated date - time (Y/N)?

Enter one of the following:

Y compiles the scripts on the compile list.

N halts the process and returns you to the Dictionary-IV Development Menu.

48
Copyright © 2009 Thoroughbred Software International, Inc.

Press the Y key to compile the scripts on the compile list. If the compile list exists, and if it is not empty,
the name of each script and its description will be displayed as it compiles. The script code will be listed
below this information. To stop the compilation process at any time, press the Escape key.

Errors pause compilation. To continue compiling after an error is encountered, press the Enter key. For
more information on the errors you may encounter see the sections on How to Manage Compilation
Errors and Error Messages.

After the compiler finishes processing, you will be returned to the Dictionary-IV Development menu.

If the compile list does not exist or is empty, the utility will display a message. Press the Enter key to
return to the Dictionary-IV Development Menu.

How to Define Your Own Compile List

If the Generate Compile List Utility described in the preceding section does not meet site requirements,
you can use alternate methods to build compile lists. The following sample Thoroughbred Basic code is
distributed with Dictionary-IV as the IDU006 program. It builds a compile list from a range of scripts.
You can modify the code to match your specifications.

0010 REM &REM&

0100 SETERR 9000; ! Set error trap.
 SETESC 9000; ! Set escape trap.
 PRINT 'WC', 'CN', ! Clear all windows.
 "Build List of Scripts to Compile",;
 C1=UNT; ! Get an available channel.
 OPEN (C1) "IDDBD"; ! Open the dictionary.
 FID$=FID(C1), <_> ! Get the FID of dictionary.
 D=DEC(FID$(20,1)) ! Save disk number.

0200 INPUT @(0,2), 'CL', ! Get "from script" name.
 "Enter starting script name: ",FROM$;
 IF CTL=4 ! If F4 key is pressed,
 GOTO 9000 ! leave the procedure.
 FI;
 EXTRACT (C1,KEY="P"+FROM$,DOM=201) ! Move key pointer.

0210 K$=KEY(C1,END=200); ! Get next key.
 READ (C1); ! Unextract the key.
 IF K$(1,1) <> "P" ! If not a script record
 GOTO 200 ! reenter from script name.
 FI

49
Copyright © 2009 Thoroughbred Software International, Inc.

0220 INPUT @(0,3),'CL' ! Get "to script" name.
 "Enter ending script name: ",TO$
 IF CTL=4 ! If F4 key is pressed
 GOTO 9000 ! leave the procedure.
 FI;
 IF TO$=FROM$ AND TO$<>"" ! If "to value" = "from value"
 TO$=TO$+"~" ! add last value to entry
 FI;
 IF TO$="" ! If Enter key pressed
 TO$="~" ! set to last key value.
 FI$
 IF TO$<FROM$! If "to value" < "from value"
 GOTO 220 ! reenter "to value".
 FI;
 FROM$="P"+FROM$, ! Add "P" key prefix to "from
 TO$="P"+TO$! value" and "to value".

0300 CLF$="4GLCL"+FID(0); ! Set compile list file name.
 CLEAR ERC; ! Clear error control.
 WHILE ERC=0; ! Erase compile list file on
 ERASE CLF$, ERC=1; ! all available disks.
 WEND;
 SORT CLF$,9,2000,D,0; ! Create compile list file
 C2=UNT; ! Get an available channel.
 OPEN (C2) CLF$; ! Open the compile list file.
 WRITE (C2,KEY=00+DAY); ! Write data header record.
 TO=TIM,T1=FPT(TO)*60, ! Resolve time.
 TO$=STR(TO:"00")+":"+
 STR(T1:"00")+":"+
 STR(FPT(T1)*60:"00");
 WRITE (C2,KEY=01+TO$); ! Write time header record.
 EXTRACT (C1,KEY=FROM$,DOM=301)! Move key pointer back to
 ! from record.

0400 K$=KEY(C1,END=9000); ! Get next key.
 IF K$>TO$! If next key is out of range
 GOTO 9000 ! leave the procedure.
 FI;
 IF STL(K$)=9 ! If key is a header record
 PRINT @(40,0),K$(2),; ! print current script name
 WRITE (C2,KEY=K$) ! write it to compile list
 FI;
 READ (C1,KEY=K$+$FF$,DOM=400);! Move pointer to next! header.
 GOTO 400 ! Go get next key.

9020 RUN "ID" ! Return to Dictionary-IV menu.

How to Manage Compilation Errors

You must remove errors from scripts to produce working programs. The following subsections describe
how to manage common compilation problems:

• How to Use the Compile Error Report describes how to get a list of the errors produced during
compilation.

50
Copyright © 2009 Thoroughbred Software International, Inc.

• How to Resize Scripts and Programs describes strategies you can use when scripts or programs are
too large to be compiled.

How to Use the Compile Error Report

The Compile Error Report makes a list of the errors produced by the last compile. When you compile a
script or a group of scripts, all errors are written to the compile error log file. When you perform a new
compile, this file is overwritten.

To display the compile error log, go to the Dictionary-IV Development Menu. Type 8 and press the Enter
key. If the compiler found errors, a screen similar to the following will be displayed:

To move through the screen, press the down arrow, up arrow, Page Down, Page Up, or Home key. To go
to a specific line, press the F10 key.

To exit the utility, press the F4 key. The following message will be displayed:

Do you want a printed copy (Y/N)?

Enter one of the following:

Y prompts you to enter a printer code where the hard copy will be produced.

N exits the utility and returns you to the Dictionary-IV Development Menu.

51
Copyright © 2009 Thoroughbred Software International, Inc.

How to Resize Scripts

If a script is too large, the script will not be compiled and the following message will be displayed:

Generated code is nnnnnn bytes and cannot be saved

A compiled script cannot exceed 64K. If a script is too large, consider turning parts of the script into
overlay scripts. For more information on overlay scripts see the section on Different Types of Scripts in
Chapter 2.

Error Messages

The following subsections contain lists of syntax errors and other compilation errors.

Syntax Errors

** ERR=(script statement where error found)

The compiler expects a Script-IV key word and one is not found, or a key word other than a data
declaration is found in the Data Declaration section of the script.

** ERR: (statement with basic compile error)

The script has attempted to open or access undeclared definitions, or the script has attempted to
access a definition that has not been opened. Another common cause of this error is making
assignments without using the LET keyword.

** IF/ENDIF mismatch

The compiler has encountered a new procedure with unmatched IFs and ENDIFs; there must be a
corresponding ENDIF for each IF/THEN statement.

** IF/LOOP nesting error

The compiler has encountered a procedure with misplaced ENDIFs and ENDLOOPs. Check the
order of ENDIFs and ENDLOOPS and make sure they match the nesting order.

** IF/THEN mismatch

The compiler has encountered an IF statement with an unmatched THEN; there must be a
corresponding THEN for each IF statement.

** Invalid IF structure

The compiler has encountered incorrect IF/ENDIF, LOOP/ENDLOOP nesting.

** Invalid Link Alias

The link alias is too long. The limit is 8 characters.

52
Copyright © 2009 Thoroughbred Software International, Inc.

** LOOP/ENDLOOP mismatch

The compiler has encountered a new procedure with unmatched LOOPs and ENDLOOPs. There
must be a corresponding ENDLOOP for each LOOP statement.

** No statement generated

The compiler has encountered incomplete syntax. Check for incorrect command structure or key
words, which may be used out of context.

** PRE/POST "ALL" must be first or last

The compiler has encountered a PRE or POST option in an INPUT SCREEN command that
specifies ALL, but ALL is not the first or last specification. Specify ALL in the first or last
position for the PRE or POST option.

** undefined procedure

The compiler could not locate the referenced procedure.

Other Compile Errors

** "xxxxxxxx" already exists but is not a program

The referenced script name is not a program file.

** Copy source xxxxxx not found

The source specified in a COPY or INCLUDE statement cannot be located.

** Copy source xxxxxx is being edited by another user

The source specified in a COPY or INCLUDE statement was located but it is being accessed by
another user.

** Duplicate line number

The same Thoroughbred Basic line has been generated twice. Call Thoroughbred Product
Support.

** Duplicate procedure

The same procedure name has been used twice in a script.

** Invalid format (format-name)

The specified format is not defined in Dictionary-IV, or it is corrupt.

** Invalid link (link-name)

The specified link is not defined in Dictionary-IV, or it is corrupt.

53
Copyright © 2009 Thoroughbred Software International, Inc.

** Invalid screen (screen-name)

The specified screen is not defined in t Dictionary-IV, or it is corrupt.

** Invalid view (view-name)

The specified view is not defined in Dictionary-IV, or it is corrupt.

**(link-name) has no text field defined

There is no text field defined in the script. Specify a text-id for the relevant command.

**(link-name) text field "text-id" is not defined

The specified text field is not defined in the link.

** Missing Text File Name

This message can only occur for links that specify MSORT or TISAM files. Check the TEXT
File specification in the Link Definition.

** No sorts defined for (link-name)

There are no sorts defined in the specified link.

54
Copyright © 2009 Thoroughbred Software International, Inc.

SSAAMMPPLLEE SSCCRRIIPPTTSS
The scripts illustrated in this chapter are from the 4S library. You can edit, view, or print any of these
scripts. These scripts demonstrate various features and capabilities of the Script-IV language. If you plan to
use any of these scripts in an application, you may have to modify it to meet site requirements.

The following sample scripts are illustrated:

4SEX001 is a primary script that provides an example of line offset with scrolling.

4SSAMPL1 is a copy script used for data declarations.

4SSAMPL2 is an overlay script that initializes demonstration data.

4SSAMPL3 is an overlay script that provides examples of the PRINT VIEW command.

4SSAMPL4 is an overlay script that provides an example of the CHANGE command.

4SSAMPLE is a primary script that provides an example of how scripts can be used in sales. It is the
parent script of all the 4SAMPLx scripts listed above.

55
Copyright © 2009 Thoroughbred Software International, Inc.

56
Copyright © 2009 Thoroughbred Software International, Inc.

57
Copyright © 2009 Thoroughbred Software International, Inc.

58
Copyright © 2009 Thoroughbred Software International, Inc.

59
Copyright © 2009 Thoroughbred Software International, Inc.

60
Copyright © 2009 Thoroughbred Software International, Inc.

61
Copyright © 2009 Thoroughbred Software International, Inc.

62
Copyright © 2009 Thoroughbred Software International, Inc.

63
Copyright © 2009 Thoroughbred Software International, Inc.

64
Copyright © 2009 Thoroughbred Software International, Inc.

65
Copyright © 2009 Thoroughbred Software International, Inc.

	Introduction
	Overview of Thoroughbred ScriptIV
	For More Information

	Creating Scripts
	The Script Editor
	How to Structure a Script
	Different Types of Scripts
	Script Execution Diagrams

	ScriptIV Tips and Techniques
	Terminal Keyboard Values
	Escape Processing
	Using Keys
	CONNECT Commands
	Database Maintenance and ScriptIV
	Interface to Thoroughbred Basic

	Compiling Scripts
	Introduction
	How to Compile from the Script Editor
	How to Compile from the Dictionary-IV Development Menu
	How to Use a Compile List
	How to Define Your Own Compile List
	How to Manage Compilation Errors
	Error Messages

	Sample Scripts

